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1. INTRODUCTION AND PRELIMINARIES

Let I be a regulated function on [a, b] (i.e., I is a uniform limit of step
functions on [a, bD. We want to approximate I in the Chebyshev sense by
linear combinations of functions which form an extended Chebyshev system
of order three on [a, b] [2, Chapter 1]. For a certain subclass of regulated
functions we give a new characterization for best approximation and use
this to prove a convergence result for Polya's Algorithm. Our convergence
result lends support to conjectures of Descloux [I] concerning piecewise
analytic functions. The extension of our results to Chebyshev systems in
general and to wider subclasses of regulated functions seems more difficult
and is under investigation. Define

II/II = sup{1 j(x)l; a :(;; x :(;; b},

/+(x) = lim sup j(u); I-(x) = lim inf j(u).
U-"x u-"X

If g is in F, the family of approximating functions, define

E±(x; g,1) = I±(x) - g(x),

e(g) = max(11 E+ II, I: E_II).

A function g* in F is said to be a best Chebyshev approximation to I (nota~

tion: g* E (b.a.)/) if e(g*) :(;; e(g) for all g in F. As in [5] we say that x E (a, b)
is a straddle point if for some g E F

E+(x; g,f) = -L(x; g,f) = e(g),

In addition x is a [-, +] point relative to g in F if

(i) x is a straddle point,

(ii) I-(x) = liII!j(x);f+(x) = liII!j(x).
x~x X---7X

"'<x x>x

(I)

It is a [+, -] point if (i) holds and (ii) holds with 1+ and 1- unchanged.
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Using this, the equioscillation concept is generalized as follows. We say
that the error curves E±(x; g, f) alternate n times on [a, b] counting multiplic
ity if there exists a sequence of n + I points on [a, b], Xl ,,;: X 2 .. "S;; X"-l

such that no point occurs more than twice, and if x,= Xi.1 for some i
then Xi is a straddle point. As usual we require that at each point of the
sequence the error equal e(g) in magnitude and that the sign of the error
alternate at consecutive points of the sequence so that a straddle point is
either a [-, +] or [+, -] point depending on the sign pattern of the error
and if a nonstraddle point Xi is a + point (E+(Xi) = e( g)) then X"l is a
- point (E_(x;) = -e(g)). Such an approximation g is said to be an
equiosciIIator.

It is shown in [5] that if f has exactly one straddle point in (a, b) then it
has one and only one equioscillator (althoughfmay have many best approxi
mations). In the sequel we prove the convergence of Polya's Algorithm to
the equioscillator for functions of this type.

2. CHARACTERIZATION RESULTS

The following lemma is a direct consequence of a result in Karlin and
Studden [2, p. 24].

LEMMA. If Uo , ... , Un form an extended Chebyshev system of order 3 then
every nontrivial u-polynomial (u = L;=o aiui ; a, real not all zero) has, at
most, n zeroes, where zeroes of multiplicity i are counted i times, i = 1, 2, and
zeroes ofmultiplicity at least three are counted three times.

This lemma is used to prove the following result which characterizes the
equioscillator in terms of derivatives at the straddle point. We remark that
this result is in the same spirit as results in Karlin and Studden [2, pp. 295
298] in connection with generalized Markoff-Bernstein inequalities.

THEOREM 1. Let f(x) be a regulated function on [a, b] with exactly one
straddle point at c E ( a, b). Assume that f has continuous one-sidedfirst deriva
tives in a neighborhood of c. Let u* be the equioscillator for f, where f is
approximated by u-polynomials: u(x) = L;-o aiui(x). Then if Uo,..., Un form
an extended Chebyshev system of order three, u* is characterized by the
following inequalities. If c is a [-, +] point,

max[u*'(c) - f+'(c), u*'(c) - f-/(c)] ~ max[u'(c) - f+/(c), u'(c) - f-'(c)] ~ 0;
(2)



If c is a [+, -] point,

POLYA'S ALGORITHM 43

max[f/(c) - u*'(c),f_'(c) - u*'(c)] :): max[/+'(c) - u'(c),f_'(c) - u'(c)] :): 0,
(3)

lor all u E (b.a.)!. Furthermore, equality holds in (2) or (3) if and only if
u == u*.

Proof We prove only (2) since (3) follows similarly. The right hand
inequality of (2) is clear geometrically from the derivative assumptions on I
and the fact that U E (b.a.)! . For the left side, assume that for some u the
inequality is false. Then it follows that u'(c) > u*'(c). Now from Theorem I
we have the set of points a :'( Xl < X 2 < ... < Xk < C < Xk+3 < ... < X n+2 :'( b
on which the error for u* equioscillates with magnitude e(u*). Since
u, u* E (b.a.)! and u(c) = u*(c), we conclude that u - u* has at least k + I
zeroes in [a, c) and at least n - k zeroes in [c, b]. This implies by the lemma
that u == u* which contradicts u'(c) > u*'(c). If Xl is c, the proof is the same.

It remains to examine the case of equality on the left side of (2); that is,
u'(c) = u*'(c). Let d = u - u*. Then the only case we need consider is
where d(c + E) < 0; d(c - E) > 0 for E small and positive. It follows that
d"(c) = O. Hence d has a triple zero at c. By counting the remaining zeroes
as before we get d == 0 or u == u*. This concludes the proof.

The following Corollary is needed below.

COROLLARY 1. With the hypothesis 01 Theorem I we have the lollowing
inequalities:

II c is a [-, +] point,

u*'(c) - I+'(c) :): u'(c) - I+'(c) :): 0,

u*'(c) - I-'(c) :): u'(c) - I-'(c) :): O.

If c is a [+, -] point,

f+'(c) - u*'(c) :): f/(c) - u'(c) :): 0,

I-'(c) - u*'(c) :): I-'(c) - u'(c) :): 0,

(4)

(5)

with equality in (4) or (5) if and only if u == u*.

Proof The proof follows from Theorem I and its proof and the fact
(implied by the theorem) that u*'(c) :): u'(c) with equality if and only if
u = u*.

The following property of (b.a.)! is also needed and is of independent
interest.
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THEOREM 2. Let u be any relatire interior point of (b.a.)l. Then the error
curve for u, u(x) - f(x) attains its extrema, ~=E*, only at the straddle point c.
(We say that u has no critical points other t!Jan c, lvhere i u(c) -f(c) E*:
I u(c) - f-(C): = E*).

To prove the theorem, we use the following lemma.

LEMMA 1. Let X be the compact set [a, b] - [c - 0, c + 0], where
o < 0 < min(c - a, b - c). Let Co = [j~(c) + f_(c)]/2 and define

Then f has a unique b.a. from S(co), where f is any regulated function with no
straddle points on X with respect to approximation by linear combinations
ofgl ,... , gn .

Proof First assume Co = O. 5(0) is a linear space of dimension n - I
and is a Chebyshev set on X, for if a . g has n -~ 1 zeroes on X, it has n
zeroes on [a, b]; hence a . g 0== 0 since gl ,... , gn form a Chebyshev set on
[a, b]. It follows by results in [5] thatfhas a unique b.a. from 5(0). If Co ¥= 0,
then S(co) is an affine set of dimension n - I and can be written as
S(co) = 5(0) + ao . g, where ao · g is a fixed approximant such that
ao . g(c) = Co [2]. DefineJ(x) = f(x) - co' Then we have

min I!f- ul = min iiJ -+- Co - (li ao ' g)l!
UES(CO) "ES(O)

.= min J+ c - a . g - li II,
',ES(O) 0 0 .

which is attained by a unique element of 5(0). Hence a unique b.a. to f on X
from the class S(co) exists.

Proof of Theorem 2. It follows by a short convexity argument that all
relative interior elements of (b.a.), coincide at their critical points. Call these
points c, Xl"'" x k . Clearly k :s:; n - 2. The proof will be completed by
constructing a b.a. which has only c as a critical point. Assume for con
creteness that c is a [-, +] point. By Corollary I we can choose a relative
interior point a = Ii· g near u* such that a'(x) - rex) is positive in small
one-sided neighborhoods of c.

Now let B = {a . g III a . g II :s:; 211fll} and let v = b . g E B. Then II v' II
is uniformly bounded and it follows that there exists A such that for any
DEB:

AV'(C) + Il'(C) - f+'(c) > 0;

"\v'(c) + u'(c) - f-'(c) > o.
(6)
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From (6) it follows that I £lex) - f(x) + AV(X) I attains the value E* in
[c - <>, c + 0] only at the straddle point c, where 0 > 0 is chosen sufficiently
small so that Xl, ... , Xk ¢ [c - 0, c + 0]. Let X = [a, b] - [c - 0, c + 0].
By Lemma 1, f has a unique b.a. on X from S(co), call it Uo = bo • g. The
uniqueness implies that Uo could not be a relative interior point of (b.a.)! ,
since all these points yield the same error norm on X. Now take
[j . g == ii . g + ex(bo - ii) . g for ex > 0 sufficiently small such that (X ~ A
and c«bo - 11) E B. Hence in [c - 0, c + 0], I f(x) - fj . g(x) I attains E*
only at c and in X we have

I [j . g(x) - f(x)1 ~ (1 - (X) Iii' g(x) - f(x)1 + (X I bo • g(x) - f(x)1 < E*.

Hence we have a b.a. with no critical points other than c so that all relative
interior points of (b.a.)! have critical points only at c.

3. POLYA'S ALGORITHM

The following two lemmas are used to prove the main theorem of this
paper on the convergence of Polya's Algorithm.

LEMMA 2. Let B be a compact set in Rn. If m+, nr are quantities such that

(i) m+ < inf{E+'(c, d) IdE B},

(ii) m- < inf{E_'(c, d) I d EO B},

there exists € > 0 such that for all dEB we have

on [c, c + €],

on [c-€,c],

E+(x, d) > E+(c, d) + m+(x - c),

L(x, d) < E_(c, d) + m-(x - c).

(7)

(8)

Proof We prove only (7), since (8) follows in the same way. Let
(X(d) == sup{x I x EO [c, b] and E+'(x_d) > m+}. By the continuity of E+(x, d),
(X(d) > c. Now, (X(d) is a lower semicontinuous function of d. For if (X(do) > j3,
then on [c, j3], E/(x, do) > m+. But E+'(x, d) is a continuous function of x
and d; hence if there exists X n EO [c, j3] and dn converging to do such that
E+'(xn , dn ) ~ m+, it follows that there is an x* EO [c, j3] such that
E+'(x*, do) ~ m+. Hence {d EO Rn I (X(d) > j3} is an open set and (X(d) is
lower semicontinuous. Thus (X(d) assumes a minimum greater than c on B.
An application of the mean value theorem then gives (7). It is clear that the
Lemma also holds with inf replaced by sup and the inequality signs reversed.

LEMMA 3. Define 1(0) = a(l + 0)1) + b(l - o)P, where a > 0, b > O.
Then limp..."" minBE[-1I2,1I2J!(0) = 2(ab)I/2.
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Proof Let e = b/a and consider F(o) = (l +- 0)1' + e(l - 0)1'. We have
£'(0) = p[(1 +- 0)1'-1 - e(I - 0)11-1] and £"(0) = pep - 1)[(1 --;- 0)1'-2 --L

e(l - 0)1,-2] > 0 for 0 E [-1/2, 1/2]. A short calculation shows that the unique
minimum ofF(o) in [-1/2, 1/2] is at the point 0 = (el/IP-l) - 1)/0 + cl/IP-l)

for p sufficiently large. Substituting this value for 0 into F(o) and letting
v = cl/IP-l), we get that the minimum value is (2v/O +- v»11 +- c(2/0 - vW.
Taking the limit as p --+- 00 and using L'Hopital's rule we get 2cl/2 which
gives the result for f(o) after multiplying by a.

THEOREM 3. If Pn --+- 00 then a p ' g -- a* . gil--+- 0, where ap,,' g is
the best L p approximation to f and a* ~ g is the equioseillator.

"
Proof Without loss of generality, we take E* = 1, for otherwise we

may divide f by E*. (The case E* = 0 is trivial.) Assume the theorem is
false. Then we may assume that {a p } (we drop the subscript for convenience)
converges to ao * a*. By the Polya algorithm ao E (b.a.)!. Near a* we may
choose a relative interior point a of (b.a.)! which by Theorem 2 has the
property that when x * e, I a . g(x) - f(x) I < 1.

Now by Lemma 2 it follows that there is a compact ball Bo about ao such
that for all dE Bo

E,-(x, d) < Ro(x - c) +- E+(e, d),

E_(x, d) > Lo(x - c) +- E_(c, d),

on [e, e +- E]

on [e - E, e]

where Ro , Lo are chosen to satisfy (i) and (ii) in Lemma 2 (with inf replaced
by sup). Note that (7) and (8) hold for any smaller (positive) E and for any
ball contained in Bo . Set E+(e, d) = 1 +- Do ; E_(e, d) = -1 +- 00, where
I 00 I = 0 if dE (b.a.)g and otherwise I 00 i is small (for balls Bo close to ao)·
We have

rid' g(x) - f(x)IP dx
a

I
C+€

?": I d . g(x) - f(x)iP dx
c-€

I
c IC+<> (Lo(x - e) +- 1 +- oo)P dx +- 0 - Do - Ro(x - c»P dx

C-E" C

= p ~ 1 [L (1 +- °0)11+1 +- ~o (l - 00)P+l - L(1 +- 00 - LOE)P+l

- j- 0 - Do - ROE)P+l].
o
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Now pick Boabout aosuch that 11 + 80 - LOE I < Yj and 11 - 80 - RoE I < Yj,
where Yj < 1. We then have

Now using Lemma 3, given E' > 0 and small Yj, there exists peE'), such that
for p ~ peE') we have

f
b 2

(p + 1) I d· g(x) - f(x)[P dx > -- - E' - YjP+l.
a LoRo

(*)

Next we perform a similar calculation for points ci: in a ball 13 about a.
We have again by use of Lemma 2

E+(x, Cl) > R(x - c) + E+(c, Cl),

E_(x, a) < L(x - c) + E_(c, a),

on [c, c + E)

on [C-E,C),

where R, L satisfy (i) and (ii) in the lemma. Without loss of generality we
may assume that the interval 1= [c - E, C+ E] coincides with the interval
of the previous paragraph. We get after integration as before with
E+(c, a) = 1 + 3; E_(c, a) = -1 + 3;

(p + 1)r Ia.g(x) - f(x)IP dx
a

~ ~ (l + 8)P+l + ~ (l - 8)P+l - ~ (l + 8 - D)P+l
L R L

- ~ (l - S- RE)P+l + f Ia· g(x) - f(x)lpdx
R [a,bJ-I

~ ~ (1 + S)P+l + ~ (l - 3)P+l + J I a.g(x) - f(x)IP dx.
L R [a,bJ-I

Now let M(a) = max[a,bJ-I I a . g(x) - f(x)l. By choosing 13 small enough
and using Theorem 2, we can find 7)* < 1 such that M(a) ~ 7)* < 1, for
all aE 13. Hence

(p + 1)rIa.g(x) - f(x)IP dx
a
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Using Lemma 3 and continuity, it follows that there exists Sand P(E") such
that for all p ?: P(E") we have

I-=- (I -- S)P 1 , (b -- a)(1)*)1'
R

E" +- (b - a)(1)*}1'.

Hence by associating S with an element of B, it follows that for p ;;? P( E")
there exists lip E 13 such that

(p +- 1) II lip' g - filIi ~ (L~)1/2 -+- E" -+- (b - a)(1)*)p. (**)

To finish the proof we compare (*) with (**) using the fact from Corollary 1
that IN.. > LoRo. Specifically, choose E', E" such that 2/(IN..)l/2 -+- E" <
2/(LoRo)l/2 - E' and choose p ?: max[p(E'), p(E")] such that

2
(LR)1/2

This means we have found an lip for p in this range such that II lip . g ~ flip ~
II ap . g - flip which is a contradiction by uniqueness of best L p approxima
tion. This proves the theorem.

Finally we remark that iff has no straddle points the best approximation
is unique [5], and hence Polya's Algorithm converges to the equioscillator.
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